AFRL-VS-PS- AFRL-VS-PS-
TR-2004-1024 TR-2004-1024

The Raw Fabric: A Technology for Rapid Embedded
System Customization

Anant Agarwal, Saman Amarasinghe

Lab. For Computer Science, NE43-624
Massachusetts Institute of Technology
Cambridge, MA 02139

01 June 2004

Final Report

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

AIR FORCE RESEARCH LABORATORY
Space Vehicles Directorate

3550 Aberdeen Ave SE

AIR FORCE MATERIEL COMMAND
KIRTLAND AIR FORCE BASE, NM 87117-5776

DTIC COPY

AFRL-VS-PS-TR-2004-1024

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data,
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report has been reviewed by the Public Affairs Office and is releasable to the National
Technical Information Services (NTIS). At NTIS, it will be available to the general public,
including foreign nationals.

If you change your address, wish to be removed from this mailing list, or your organization no
longer employs the addressee, please notify AFRL/VSSE, 3550 Aberdeen Ave SE, Kirtland
AFB, NM 87117-5776.

Do not return copies of this report unless contractual obligations or notice on a specific
document requires its return.

This report has been approved for publication.

//signed//

JIM LYKE
Project Manager

//signed//

KIRT S. MOSER, DR-IV
Chief, Spacecraft Technology Division

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
01-06-2004 Final 01-06-2001 To 31-05-2003
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

The Raw Fabric: A Technology for Rapid Embedded System F29601-01-2-0166
Customization 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

62712E
6. AUTHOR(S) 5d. PROJECT NUMBER
Anant Agarwal and Saman Amarasinghe DARP
5e. TASK NUMBER
sc
5f. WORK UNIT NUMBER
AG
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
i NUMBER
Lab. For Computer Science,
NE43-624
Massachusetts Institute of
Technology
Cambridge, MA 02139
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Air Force Research Laboratory/VSSE DARPA
3550 Aberdeen Avenue SE AFRL
Kirtland AFB, NM 87117-5776 11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

AFRL-VS-PS-TR-2004-1024

12. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report is the final technical report for the project: The Raw Fabric: A Technology for Rapid Embedded-System Customization. The
Raw fabric is a universal computational substrate suitable for signal processing and embedded applications. The key innovation behind
Raw fabrics is the ability for software to customize chip-level communication channels in an application-specific manner, thereby enabling
the construction of mission-specific embedded systems cost-effectively. Raw fabrics offer the promise of orders of magnitude
improvements for embedded applications when compared to microprocessor-based systems. These improvements are in performance,
power, and size, and will allow system customization to be measured in hours instead of years. Raw Fabrics comprise single Raw chips
with on-chip customizable interconnect, and board-level systems containing many Raw chips. Our project has built a Raw chip prototype
and a handheld computer system based on Raw. Our results demonstrate that Raw performs at or close to the level of the best specialized
machine for many application classes. When compared to a Pentium-I11 implemented in the same technology, Raw displays one to two
orders of magnitude more performance for stream applications while performing within a factor of two for sequential-desktop
applications.

15. SUBJECT TERMS
Raw Fabric, Rapid Embedded System Customization, Microprocessor-Based Systems, Raw Chips

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES Jim Lyke
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area
Unclassified | Unclassified | Unclassified Unlimited 30 code)
505-846-5812

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

il

TABLE OF CONTENTS
Abstract
Overview of the Project
Summary of Accomplishments and Systems Built
Accomplishments and Progress
4.1 The Raw Chip
4.2 The Raw Handheld Board
4.3 The Multi-Chip Raw Fabric
4.4 The RawCC Compiler and the Stream Compiler
4.5 The Raw OS
4.6 Applications, Experimentation and Elevation
4.7 Support in Standardizing a Morphware Stable Interface

Conclusions and Recommendations for Future Work
18

Key Publications

iii

17

19

LIST OF FIGURES
Photo of the Raw chip 5

Photo of the Raw prototype motherboard. The board is 13 inches by 13 inches 5

LIST OF TAB LES
Sources of speedup for Raw over P3 (As configured in Table 3). 9

Functional unit timings on a single Raw tile and on a P3. Commonly executed
instructions appear first. FP operations are single precision.

10
Memory system data for Raw tile and P3. 11
Raw power consumption at 425 MHz, 25° C 12
Breakdown of the end-to-end latency (in cycles) for a one-word message on Raw’s
static network. 12
Performance of sequential programs on Raw and on P3. 13

Speedup of the ILP benchmarks relative to the single-tile Raw, from two to 16
tiles. 14

Streamlt performance results. 16
Speedup (in cycles) of Streamlt benchmarks relative to a 1-tiel Raw configuration.

From left, the columns indicate the Streamlt version on a P3, and on Raw
configurations with one to 16 tiles. 16

v

1 Abstract

This report is the final technical report for the project: The Raw Fabric: A Technology
for Rapid Embedded-System Customization. The Raw fabric is a universal computational
substrate suitable for signal processing and embedded applications. The key innovation
behind Raw fabrics is the ability for software to customize chip-level communication chan-
nels in an application-specific manner, thereby enabling the construction of mission-specific
embedded systems cost-effectively. Raw fabrics offer the promise of orders of magnitude
improvements for embedded applications when compared to microprocessor-based systems.
These improvements are in performance, power, and size, and will allow system customiza-
tion to be measured in hours instead of years. Raw Fabrics comprise single Raw chips with
on-chip customizable interconnect, and board-level systems containing many Raw chips. Our
project has built a Raw chip prototype and a handheld computer system based on Raw.
Our results demonstrate that Raw performs at or close to the level of the best specialized
machine for many application classes. When compared to a Pentium-III implemented in the
same technology, Raw displays one to two orders of magnitude more performance for stream

applications, while performing within a factor of two for sequential-desktop applications.

2 Overview of the Project

We begin the report by providing a technical overview of the project.

The Raw fabric [1] is a universal computational substrate that is suitable for signal pro-
cessing and embedded applications. The key innovation behind raw fabrics is the ability for
software to customize chip-level communication channels in an application-specific manner.
Raw Fabrics comprise single chip Raw systems with on-chip customizable interconnect, and

board-level systems that comprise one to many Raw chips.

Raw Fabrics address a major problem both with extant special purpose hardware sys-

tems and general purpose machines. First, modern supercomputers, built from state-of-the-

art COTS microprocessors, have failed to eliminate the need for specialized hardware in the
signal processing and embedded domains. Although supercomputing systems have the high-
est computational power, their inability to cost- effectively utilize this power for solving signal
processing problems have led to the proliferation of ASICs, FPGAs, DSPs and full-custom
hardware. Second, the need for special purpose hardware is even more acute in the embedded
application domain, where efficient utilization of area, weight, and power is paramount. Un-
fortunately, the enormous cost and lengthy time-to-deployment of special-purpose hardware

systems significantly reduces their appeal.

The Raw fabric draws its design motivation from both the strengths and weaknesses
of using custom hardware for signal processing and embedded applications. There are three
main benefits to developing custom hardware: First, when processing a stream of data, the
ability to customize pipeline stages provides an order-of-magnitude performance improvement
over using a fixed pipeline when the energy budget is fixed. Second, custom hardware is able
to efficiently orchestrate direct data movement between pipeline stages. In contrast, using
a fixed memory hierarchy with caches is very inefficient in handling certain access patterns,
such as stream data. Third, a custom design can tailor its resources to match both the level
and the granularity of the available parallelism in the application. This approach is more
efficient than using a processor supporting a fixed amount of parallelism. A fourth, and
minor advantage of custom hardware, is the ability to efficiently meet the granularity of data

required by the application by customizing the size of registers, data paths, and ALUs.

Despite these advantages, custom hardware has a series of shortcomings. One of the
biggest drawbacks in using custom hardware is its inflexibility. The inability to change
the applications that run on a given hardware platform dramatically reduces their cost-
effectiveness. Although FPGAs were partially successful in addressing this problem, seamless
reconfiguration during continuous operation is yet to be achieved. More importantly, the
inability of these devices to present an abstraction of unlimited resources renders the task
of mapping programs to these devices incredibly difficult. Because ASICs are application-

specific and cannot be applied to multiple problems, designing a custom ASIC for an algorithm

can only afford a fraction of the development cost of designing a microprocessor. Therefore,
it is not feasible to produce an ASIC with the same clock speed as a microprocessor of
the same generation. Furthermore, it becomes prohibitively expensive to design a custom
ASIC for each new process generation, while porting an application to a later version of a

microprocessor is relatively simple.

Our project consisted of four major components, which together provide a complete
polymorphous computing environment. The four components are the Raw Processor, the
Raw Fabric, the Raw Compiler, and the Raw Operating System. As described shortly, in

each of the components, we resolved many open research issues and technical challenges.

In summary, this project designed and built a flexible and scalable computation fabric
that can be morphed into solving many embedded applications in an energy, area, and time-
efficient manner. A major component of this research was the Raw processor. The Raw
processor is a simple tiled architecture with an innovative communication subsystem and is
an ideal building block for larger computation fabrics. As such, the Raw fabric is an early

proof-of-concept prototype of the general polymorphous computing architecture concept.

In the project, we investigated many novel micro- architectural features, compiler algo-
rithms, and operating system components. Each of these are central to a successful polymor-

phous computing environment.

The project also completed the design of a multi-Raw-chip fabric. The project also

implemented an optimized compiler and operating system for the Raw environment.

The project developed several prototype Raw systems that are now in use at two DARPA
sites including ISI and ATL at Lockheed Martin. Additional boards are in the process of

being tested and they will go to several more of our DARPA collaborators.

3 Summary of Accomplishments and Systems Built

The following are the major components of our system that were implemented in our project.

1. Completion of fabrication of a Raw chip with an embedded on-chip customizable fabric

2. Completion of a single-board Raw system (referred to as the “handheld system”) for

single-chip embedded applications, including

(a) Completion of the implementation of a handheld communicator system for stan-

dalone general purpose computation
(b) design of an embedded wireless processor
(c) design of an embedded networking fabric and control plane

(d) Implemented a 32-node acoustic beamformer. This is being extended to 1K nodes.

3. The design of a multiple-Raw chip fabric system.
4. Design of a PCI interface
5. Optimization of a stream language and compiler

6. A beamformer microphone array design

4 Accomplishments and Progress

This section provides specific details of our accomplishments.

We built a working prototype of a Polymorphous Computing Architecture platform

based on the Raw infrastructure. The following sections discuss the components in detail.

4.1 The Raw Chip

The Raw processor was a major system that we built. We implemented the prototype Raw
microprocessor in the SA-27E ASIC flow, which uses IBM’s CMOS 7SF, a 180nm, 6-layer
copper process. We received 120 chips from IBM in October of 2002. We are pleased to

report that there were no bugs in first silicon.

Figure 1 shows a micro-photograph of the Raw die. The 16-tile geometry of the chip

can be clearly made out.

Figure 1: Photo of the Raw chip.

4.2 The Raw Handheld Board

We validated the Raw processor on a prototype mother board called the Raw handheld board.

We built several such boards along with our collaborators at ISI. Boards are in use at ISI and

ATL (Lockheed Martin). Each board contains the Raw chip, SDRAM chips, I/O interfaces
and interface FPGAs.

Figure 2 shows a photograph of the Raw motherboard.

We have also designed an embedded wireless processor, an embedded networking fabric
and control plane, and a 32-node acoustic beamformer (to be extended to 1K nodes in the

following year).

We also implemented a high-speed USB interface for the motherboard. This allows the

board to be connected to any laptop of PC with a USB2 interface.

We are nearing completion of the PCI interface, which will allow the Raw motherboard

to function as a standalone system and provide even higher speed I/0.

4.3 The Multi-Chip Raw Fabric

We designed the Raw fabric board and the Raw fabric I/O board as well (along with our
collaborators at ISI). The fabric board contains 4 Raw chips and can be connected in a mesh
along with other fabric boards. The I/O board plugs into the periphery of the fabric board

mesh and provides I/O, memory and other expansion functions.

In the next phase we will implement and test these boards and build a fabric system

containing 64 Raw chips.

4.4 The RawCC Compiler and the Stream Compiler

We built RawCC, which takes sequential C or FORTRAN programs and compiles them on
to the Raw fabric. We developed the analysis necessary to extract ILP (instruction-level
parallelism) out of sequential programs. Thus, programs written in the SUIF (Stanford
University Intermediate Form) supported languages of FORTRAN, C, are able to use our

compiler.

We also built a complete steaming compiler and language called Streamit. The language

Figure 2: Photo of the Raw prototype motherboard. The board is 13 inches by 13 inches.

syntax is like that of Java and allows the user to express stream programs effectively. Streamit

and the compiler have been distributed to the DARPA community.

4.5 The Raw OS

We developed a prototype host-based operating system for the Raw fabric. Our initial fabric
operating system includes features needed to support I/O devices and OS services expected
by applications. We developed and deployed a nano-kernel for each tile. A set of POSIX
commands have been implemented using a few dedicated OS tiles and cooperating nano-

kernels. We have distributed this OS to the DARPA community.

We also developed RawGDB a debugger for Raw. RawGDB has also been released to

external users.

We also implemented the compiler and runtime system needed for the software supported

instruction cache and SUDS [2] (software undo system) systems.

4.6 Applications, Experimentation and Evaluation

We performed a substantial amount of experimentation of applications using the real Raw
system. We also validated our simulator against the real hardware and conducted more
experiments. We used our working RawCC compiler, the stream compiler and Raw OS for

this task. ISI and Lincoln Labs have also developed several PCA applications on Raw.

Specifically, here are some highlights. The domains we examined include ILP computa-
tion, and stream and embedded computation. The performance of Raw in these individual
areas are presented as comparison to a reference 600 MHz Pentium III, because the Pentium

IIT was manufactured using the same 180 nm technology as Raw.

We note that Raw achieves greater than 16x speedup (versus a single tile) for several

applications (listed in 6). Table 1 discusses the various factors that helped Raw.

Tables 2 and 3 show functional unit timings and memory system characteristics for both

Factor responsible Maximum Speedup
Tile parallelism (Exploitation of Gates) 16x
Load/store elimination (Management of Wires) 3x
Streaming mode vs cache thrashing (Management of Wires) 60x
Streaming I/0O bandwidth (Management of Pins) 60x
Increased cache/register size (Exploitation of Gates) ~2x
Bit Manipulation Instructions (Specialization) 3x

Table 1: Sources of speedup for Raw over P3 (as configured in Table 3).

systems, respectively. Table 4 shows Raw’s measured power consumption. Table 5 lists a
breakdown of the end-to-end message latency on Raw’s scalar operand network. The low 3-
cycle inter-tile ALU-to-ALU latency and zero cycle send and receive occupancies are critical

for obtaining good performance for ILP.

Latency Throughput
Operation Raw Tile | P3 | Raw P3
ALU 1 1 1 1
Load (hit) 3 3 1 1
Store (hit) - - 1 1
FP Add 4 3 1 1
FP Mul 4 5 1 1/2
Mul 2 4 1 1
Div 42 26 1 1
FP Div 10 18 | 1/10 | 1/18
SSE FP 4-Add - 4 - 1/2
SSE FP 4-Mul - 5 - 1/2
SSE FP 4-Div - 36 - 1/36

Table 2: Functional unit timings on a single Raw tile and on a P3. Commonly executed

instructions appear first. FP operations are single precision.

10

1 Raw Tile P3
CPU Frequency 425 MHz 600 MHz
Sustained Issue Width 1 in-order | 3 out-of-order
Mispredict Penalty 3 10-15
DRAM Freq (RawPC) 100 MHz 100 MHz
DRAM Freq (RawStreams) 425 MHz 100 MHz
DRAM Access Width 8 bytes 8 bytes
L1 D cache size 32K 16K
L1 T cache size 32K 16K
L1 miss latency 54 cycles 7 cycles
L1 fill width 4 bytes 32 bytes
L1 line sizes 32 bytes 32 bytes
L1 associativities 2-way 4-way
L2 size - 256K
L2 associativity - 8-way
L2 miss latency - 79 cycles
L2 fill width - 8 bytes

Table 3: Memory system data for Raw tile and P3.

11

Core Pins

Idle - Full Chip 9.6 W | 0.02 W

Average - Per Active Tile | 0.54 W -

Average - Per Active Port -1 02W

Average - Full Chip 182 W | 28 W

Table 4: Raw power consumption at 425 MHz, 25° C

Latency
Sending Processor Occupancy 0
Latency to Network Input 1
Latency per hop 1
Latency from Network Output to ALU 1
Receiving Processor Occupancy 0

Table 5: Breakdown of the end-to-end latency (in cycles) for a one-word message on Raw’s

static network.

Much like a VLIW (very long instruction word) architecture, Raw relies on the compiler
to find and exploit ILP. We now examine how well Raw is able to support ILP. For this
evaluation, we select a range of benchmarks that encompasses a wide spectrum of program
types and degree of ILP. For some of the irregular integer benchmarks that Rawcc is not
mature enough to orchestrate, we compile and execute them on one tile to get a conservative
worst case bound on their performance on Raw. Table 6 presents the performance of these

benchmarks on RawPC and on the P3.

Of the benchmarks in our study, Raw is able to outperform the P3 for all the scientific
benchmarks and several irregular applications. Of these, about half have speedups in the
2-3 range, but the other half have more promising speedups in the 4-7 range. At the other

end of the spectrum for the integer applications run on a single Raw tile, our sampling of

12

applications showed that a Raw tile is roughly a factor of 2 slower.

Raw | Cycles Speedup vs P3

Benchmark Source Tiles on Raw | by Cycles | by Time

Dense-Matriz Scientific Applications

Swim Spec95 16 58M 4.0 2.8
Tomcatv Spec92 16 3.2M 1.9 1.4
Btrix Nasa7:Spec92 16 4.6M 5.5 3.9
Cholesky Nasa7:Spec92 16 5.50M 2.9 2.5
Mxm Nasa7:Spec92 16 2.0M 3.5 2.5
Vpenta Nasa7:Spec92 16 2.5M 10.3 7.3
Jacobi Raw benchmark suite 16 150K 6.4 4.5
Life Raw benchmark suite 16 4.0M 7.4 5.2

Sparse-Matriz/Integer Applications

Fpppp-kernel Spec92 16 150K 11.2 7.9
SHA Perl] Oasis 16 920K 1.9 1.3
Unstructured CHAOS 16 156M 1.1 0.75
Adpcm Mediabench 1 20M 0.85 0.60
GSM Mediabench 1 310M 0.57 0.40
175.vpr Spec 2000 1 2.9B 0.71 0.51
300.twolf Spec 2000 1 2.3B 0.56 0.40

Table 6: Performance of sequential programs on Raw and on a P3.

13

Table 7 shows the speedups achieved by Rawcc as the number of tiles varies from two to
16. The speedups are compared to performance of a single Raw tile. Overall, the source of
speedups comes primarily from tile parallelism (see Table 1), but several of the dense matrix
benchmarks benefit from increased cache capacity with parallel access as well (which ex-
plains the super-linear speedups). In addition, Fpppp-kernel benefits from increased register

capacity, which leads to fewer spills.

Number of tiles

Benchmark 2 4 8 16

Dense-Matriz Scientific Applications

Swim 14122) 43| 7.9
Tomcatv 1.6 | 3.0 42| 4.8
Btrix 1.6 | 4.5 | 10.3 | 21.8
Cholesky 1.9 37| 6.2 6.1
Mxm 1.3 37| 5.7 7.0
Vpenta 1.6 | 49| 11.3 | 22.0
Jacobi 17142 82 |16.5
Life 0.8 120 49105

Sparse-Matriz/Irreqular Applications

SHA 1.1 118 19| 23

Fpppp-kernel | 1.4 | 33| 65| 7.4

Unstructured | 1.2 | 2.0 2.1 2.0

Table 7: Speedup of the ILP benchmarks relative to the single-tile Raw, from two to 16 tiles.

Next, we present performance of stream computations for Raw. Stream computations
arise naturally out of real-time I/O applications as well as from embedded applications. The
data sets for these applications are often large and may even be a continuous stream in

real-time, which makes them unsuitable for traditional cache based memory systems. Raw

14

provides a more natural support for stream based computation by allowing data to be fetched

efficiently through a register mapped, software orchestrated network.

The following results are for programs written in Streamlt, a high level stream lan-
guage, and automatically compiled to Raw. Streamlt is a high-level, architecture-independent
language for high-performance streaming applications. Streamlt contains language con-
structs that improve programmer productivity for streaming, including hierarchical struc-
tured streams, graph parameterization, and circular buffer management; these constructs
also expose information to the compiler and enable novel optimizations. We have developed
a Raw backend for the Streamlt compiler, which includes fully automatic load balancing,

graph layout, communication scheduling, and routing.

We evaluate the performance of RawPC on several Streamlt benchmarks, which repre-
sent large and pervasive DSP applications. Table 8 summarizes the performance of 16 Raw
tiles vs. a P3. For both architectures, we use Streamlt versions of the benchmarks; we do
not compare to hand-coded C on the P3 because Streamlt performs at least 1-2X better for
5 of the 7 applications (this is due to aggressive unrolling and constant propagation in the
StreamlIt compiler). The comparison reflects two distinct influences: 1) the scaling of Raw
performance as the number of tiles increases, and 2) the performance of a Raw tile vs. a P3
for the same Streamlt code. To distinguish between these influences, Table 9 shows detailed

speedups relative to StreamlIt code running on a 1-tile Raw configuration.

15

Cycles Per Output Speedup vs P3
Benchmark on Raw by Cycles | by Time
Beamformer 2675 6.6 4.6
Bitonic Sort 11 5.7 4.0
FFT 22 2.7 1.9
Filterbank 305 9.5 6.7
FIR 59 7.7 5.4
FMRadio 2610 9.6 6.8
Matrix Mult 183 5.4 3.8

Table 8: Streamlt performance results.

StreamlIt | StreamIt on n Raw tiles
Benchmark on P3 1 2 4 8 16
Beamformer 2.6 |1.0|3.74.0 8.1 17
Bitonic Sort 1211019 |34 |53 6.9
FFT 1.0 (1.0 |13 |17 |24 2.7
Filterbank 072 | 1.0 | 1.3 |13 |34 6.9
FIR 3411012356 | 12 26
FMRadio 1.2 1101011 |44 12
Matrix Mult 11110 (20|29 |28 5.7

Table 9: Speedup (in cycles) of StreamIt benchmarks relative to a 1-tile Raw configuration.
From left, the columns indicate the Streamlt version on a P3, and on Raw configurations

with one to 16 tiles.

16

The primary result illustrated by Table 9 is that Streamlt applications scale effectively
for increasing sizes of the Raw configuration. For FIR, FFT, and Bitonic, the scaling is
approximately linear across all tile sizes (FIR is actually super-linear due to decreasing register
pressure in larger configurations). For other applications, the scaling is slightly inhibited for
small configurations. This is because 1) IMEM constraints prevent an unrolling optimization
for small tile sizes (Beamformer, FM, Matrix Mult) and 2) there is some constant overhead

that is amortized in larger configurations.

The second influence is the performance of a P3 vs. a single Raw tile on the same
Streamlt code, as illustrated by the second column in Table 9. In most cases, performance is
comparable. The P3 performs better in two cases because it can exploit ILP: Beamformer has
independent real/imaginary updates in the inner loop, and FIR is a fully unrolled multiply-
accumulate operation. In other cases, ILP is obscured by circular buffer accesses and control

dependences.

In all, StreamlIt applications benefit from Raw’s exploitation of parallel resources and
management of wires. The abundant parallelism and regular communication patterns in
stream programs are an ideal match for the parallelism and tightly orchestrated communi-
cation on Raw. As stream programs often require high bandwidth, register-mapped commu-
nication serves to avoid costly memory accesses. Also, autonomous streaming components
can manage their local state in Raw’s distributed data caches and register banks, thereby
improving locality. These aspects are key to the scalability demonstrated in the Streamlt

benchmarks.

4.7 Support in Standardizing a Morphware Stable Interface

Our project has played an active role in the Morphware Forum.

Specifically, we have taken a leadership role in specifying the Streaming Virtual Machine
(SVM) which will provide a common interface for high-level compilation tools to target all

PCA architectures. In order to achieve high performance for streaming applications, the SVM

17

embraces a separation of control and data-intensive code, explicit communication via streams,
and explicit memory management for streaming data. It also adopts a novel two-stage com-
pilation strategy whereby high-level tools input a description of the target architecture (using
the PCA Machine Model) and compile to a version of the SVM that is parameterized for that
architecture. Reaching consensus on this interface has involved detailed design discussions
with many of the PCA teams, including Stanford, Raytheon, Georgia Tech, USC and the
University of Texas. Along with Reservoir Labs, we have coordinated the design process
and have produced a stable specification that is serving as a cornerstone of the Morphware
toolchain. We have also expressed the Raw architecture in terms of the Machine Model, and
are actively engaged with the evaluation of the Reservoir High-Level Compiler that targets

the SVM.

5 Conclusions and Recommendations for Future Work

This report described the architecture and implementation of the Raw prototype. Raw’s
exposed ISA (instruction set architecture) allows parallel applications to exploit all of the
chip resources, including gates, wires and pins. Raw supports ILP by scheduling operands
over a scalar operand network that offers very low latency for scalar data transport. Raw’s
compiler manages the effect of wire delays by orchestrating both scalar and stream data
transport. The Raw processor demonstrates that existing architectural abstractions like
interrupts, caches, and context-switching can continue to be supported in this environment,
even as applications take advantage of the low-latency scalar operand network and the large

number of ALUs.

Our results demonstrate that the Raw processor performs at or close to the level of
the best specialized machine for each application class. When compared to a Pentium III,
Raw displays one to two orders of magnitude more performance for stream applications,
while performing within a factor of two for low-ILP applications. It is our hope that the

Raw research will provide insight for architects who are looking for ways to build versatile

18

processors that leverage the vast silicon resources while mitigating the considerable wire

delays that loom on the horizon.

Our effort has pointed to several future directions that are worth exploring: (1) eval-
uating the performance for much larger numbers of tiles and a wider set of programs, (2)
generalizing on-chip operand networks so that they support other forms of parallelism ex-
ploited by microprocessors such as stream parallelism and thread parallelism, (3) complete
designs and evaluation of both dynamic and compile-time schemes for operation/operand as-
signment and scheduling, (4) mechanisms for fast exception handling and context switching,
(5) a thorough analysis of the tradeoffs between commit point, exception handling capability,
and network latency, (6) low energy tiled processors and scalar operand networks, and (7)

tiled architectures with support for bit-level processing.

6 Key Publications

Our major publications are these: [3], [1], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18].

References

[1] Michael Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Ghodrat, Ben Greenwald,
Henry Hoffman, Jae-Wook Lee, Paul Johnson, Walter Lee, Albert Ma, Arvind Saraf,
Mark Seneski, Nathan Shnidman, Volker Strumpen Matt Frank, Saman Amarasinghe,
and Anant Agarwal. The Raw Microprocessor: A Computational Fabric for Software

Circuits and General Purpose Programs. IEEE Micro, pages 25-35, March/April 2002.

[2] Matthew Frank, C. Andras Moritz, Benjamin Greenwald, Saman Amarasinghe, and
Anant Agarwal. SUDS: Primitive Mechanisms for Memory Dependence Speculation.

Technical report, M.I.T., January 6 1999.

19

3]

C. Andras Moritz, Donald Yeung, and Anant Agarwal. SimpleFit: A Framework for
Analyzing Design Tradeoffs in Raw Architectures. IEEE Transactions on Parallel and
Distributed Systems, July 2001.

Volker Strumpen, Henry Hoffmann, and Anant Agarwal. A Stream Algorithm for the
SVD. Technical Memo MIT-LCS-TM-641, Computer Science and Artificial Intelligence

Laboratory, Massachusetts Institute of Technology, October 2003.

Henry Hoffmann, Volker Strumpen, and Anant Agarwal. Stream Algorithms and Ar-
chitecture. Technical Memo MIT-LCS-TM-636, Laboratory for Computer Science, Mas-

sachusetts Institute of Technology, March 2003.

Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fataneh Ghodrat,
Benjamin Greenwald, Henry Hoffmann, Paul Johnson, Walter Lee, Arvind Saraf, Nathan
Shnidman, Volker Strumpen, Saman Amarasinghe, and Anant Agarwal. A 16-Issue
Multiple-Program-Counter Microprocessor with Point-To-Point Scalar Operand Net-

work. In Proceedings of the IEEE International Solid-State Circuits Conference, 2003.

Michael Bedford Taylor, Walter Lee, Saman Amarasinghe, and Anant Agarwal. Scalar
Operand Networks: On-Chip Interconnect for ILP in Partitioned Architectures. In Pro-
ceedings of the International Symposium on High-Performance Computer Architecture,

2003.

Jason Kim, Michael Bedford Taylor, Jason Miller, and David Wentzlaff. Energy Char-
acterization of a Tiled Architecture Processor with On-Chip Networks. In Proceedings

of the International Symposium on Low Power Electronics and Design, 2003.

Diego Puppin, Mark Stephenson, Saman Amarasinghe, Una-May O’Reilly, and Mar-
tin C. Martin. Adapting convergent scheduling using machine learning. In Languages

and Compilers for Parallel Computing, College Station, TX, October 2003.

20

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Walter Lee, Diego Puppin, Shane Michael Swenson, and Saman Amarasinghe. Conver-
gent scheduling. In International Symposium on Microarchitecture, Istanbul, Turkey,

November 2002.

Mark Stephenson, Johnathan Babb, and Saman Amarasinghe. Bitwidth analysis with
application to silicon compilation. In ACM SIGPLAN Conference on Programming

Language Design and Implementation, Vancouver, British Columbia, June 2000.

Rajeev Barua, Walter Lee, Saman Amarasinghe, and Anant Agarwal. Compiler support
for scalable and efficient memory systems. IEEE Transactions on Computers, 50(11),

November 2001.

Gleb A. Chuvpilo, David Wentzlaff, and Saman Amarasinghe. Gigabit ip routing on raw.
In IEEE HPCA Workshop on Network Processors, pages 2—-9, Cambridge, Massachusetts,
February 2002.

William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamit: A language for
streaming applications. In International Conference on Compiler Construction, Greno-

ble, France, April 2002.

Michael Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli, Chris
Leger, Andrew A. Lamb, Jeremy Wong, Henry Hoffman, David Z. Maze, and Saman
Amarasinghe. A stream compiler for communication-exposed architectures. In Interna-

tional Conference on Architectural Support for Programming Languages and Operating

Systems, San Jose, CA USA, October 2002.

Michal Karczmarek, William Thies, and Saman Amarasinghe. Phased scheduling of
stream programs. In Languages, Compilers, and Tools for Embedded Systems, San Diego,

CA, June 2003.

Andrew A. Lamb, William Thies, and Saman Amarasinghe. Linear analysis and opti-
mization of stream programs. In ACM SIGPLAN Conference on Programming Language

Design and Implementation, San Diego, CA, June 2003.

21

[18] Gleb A. Chuvpilo and Saman Amarasinghe. High-bandwidth packet switching on the
raw general-purpose architecture. In International Conference on Parallel Processing,

Kaohsiung, Taiwan, Republic of China, October 2003.

22

DISTRIBUTION LIST

DTIC/OCP
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir, VA 22060-6218 lcy

AFRL/VSIL
Kirtland AFB, NM 87117-5776 lcy

AFRL/VSIH
Kirtland AFB, NM 87117-5776 lcy

Lab. For Computer Science, NE43-624
Massachusetts Institute of Technology
Cambridge, MA 02193 1lcy

Official Record Copy
AFRL/VSSV/Jim Lyke lcy

23

24

